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Abstract

Background: There is empirical evidence that measured postpartum blood loss has a lognormal distribution. This
feature can be used to analyze events of the type ‘blood loss greater than a certain cutoff point’ using a lognormal
approach, which takes into account all the quantitative observations, as opposed to dichotomizing the variable blood
loss volume into two categories. This lognormal approach uses all the information contained in the data and is
expected to provide more efficient estimates of proportions and relative risk when comparing treatments to prevent
postpartum haemorrhage. As a consequence, sample size can be reduced in clinical trials, while keeping the statistical
precision requirements.

Methods: The authors illustrate how a lognormal approach can be used in this situation, using data from a clinical trial
and the event ‘blood loss greater than 1000 mL’.

Results: Estimates of the proportions of this event for each treatment, and relative risks obtained with this
method are presented and compared with the standard estimates obtained by dichotomizing measured
blood loss volume. An example of how the blood loss distributions of two treatments can be compared is
also presented. Different scenarios of the sample size needed to compare two treatments or interventions
are presented to illustrate how with the lognormal approach the size of a clinical trial can be reduced.

Conclusions: A distributional approach for postpartum blood loss using the lognormal distribution fitted to
the data results in more precise estimates of risks of events and relative risks, compared to the use of
binomial proportions of events. It also results in reduced required sample size for clinical trials.

Trial registration: This paper reports a secondary analysis for a trial that was registered at clinicaltrials.gov
(NCT00781066).
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Background
The development of an adequate statistical analysis tech-
nique to analyze a continuous variable depends on the
knowledge of its distribution. Many variables in biology
and medicine follow the normal distribution and stand-
ard statistical techniques can be applied to compare
means. However, when the distribution is not normal,
the standard statistical techniques are no longer appro-
priate and a transformation is often used to normalize

the distribution. This has been the case with postpartum
blood loss, for which a logarithmic transformation has
been used to compare medians, [1] based on the obser-
vation that the blood loss distribution is positively
skewed, as the lognormal distribution. Also, there are
oftentimes physical or biological justifications for a vari-
able to have a specific distribution. The lognormal distri-
bution is a result of many independent small
multiplicative effects. It is a simple model that applies to
many problems such as body and tumor mass (weight)
[2], and blood pressure [3]. Examination of simple histo-
grams of blood loss reveals right skewed distributions
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that resemble the lognormal distribution, and more in-
depth and formal statistical analysis showed that indeed
the lognormal distribution fits the blood loss distribution
very well. [4]
In the case of postpartum blood loss, there is interest

to compare events of the type ‘blood loss beyond a cer-
tain cutoff point’ because the loss of large amounts of
blood postpartum can lead to severe maternal morbidity
and mortality [5, 6]. Therefore there has been a concern
to find efficient treatments or interventions to prevent
postpartum haemorrhage (PPH), defined as blood loss of
500 ml or more within 24 h after birth, and severe PPH
(sPPH) as blood loss of 1000 ml or more within 24 h
after birth [7].
Measured blood loss is thus categorized in two cat-

egories, by means of an indicator variable of blood loss
greater than a certain cutoff point. The estimation ap-
proach used so far has been to compute the sample pro-
portion of women with blood loss equal to or above the
cutoff point, or a binomial proportion. However, the
categorization of a dependent variable results in a loss of
power to detect true effects, which is substantial if the
distribution is highly skewed and if the categorization is
done in few categories, or both [8].
We have shown empirically, elsewhere [4], that the dis-

tribution of postpartum blood loss volume is lognormal,
using data provided by the authors from three trials that
compared two drugs [1, 9] or two management proce-
dures for the third stage of labour [10], and one observa-
tional study [11]. We used this finding to propose an
analysis approach based on the lognormal distribution,
resulting in more efficient estimates of proportions and
relative risk and in a reduction of the sample size needed
in clinical trials that compare proportions between treat-
ments [4]. In this paper we illustrate how this approach
(denoted ‘the lognormal approach’) can be used to analyze
data from one of these trials, the Althabe et al. trial [1].

Methods
Descriptive histograms by treatment are constructed to
have a first view of the distributions.
The lognormal approach that we propose uses mea-

sured blood loss observations without categorizing this
variable. It consists of the following steps:
The procedure starts by fitting a three-parameter log-

normal distribution [12] to the data. The parameters of
the lognormal distribution are estimated by maximum
likelihood.
Goodness of fit is assessed using probabilistic plots,

consisting in plotting the quantiles of the fitted lognor-
mal distribution against the observed blood loss values.
If the fit is good, then the points will fall on a straight
line. The probabilistic plot is also used to detect pres-
ence of outliers and to assess the quality of the data.

Once a lognormal distribution is considered to be a
good fit to the data, the fit is visualized by plotting the
cumulative distribution function for the observed data
(‘empirical cumulative distribution function’) together
with the fitted lognormal cumulative distribution func-
tion, or, alternatively, its complement, denoted here as
the survival function. The “survival” function gives the
probability of having blood loss MORE than a particular
value. It is R(v) = 1-F(v), where F(v) is the cumulative
probability function.
The probability of an event of the type ‘blood loss

greater than a cutoff point’ is just the survival function
at the cutoff point. For example, the proportion of sPPH
is just the survival distribution at the point 1000.
Comparison of proportions between treatments and

computation of relative risks with confidence intervals are
done using bootstrap techniques. We generated one thou-
sand bootstrap samples for each treatment. The estimates
of the proportions of sPPH and PPH are then computed
for each bootstrap sample, for each treatment. [13] The
two bootstrap samples tables are matched by row (sample)
and the relative risks computed. From the distribution of
the 1000 bootstrapped relative risks, the 95% confidence
interval can be obtained from the 2.5 and 97.5% percen-
tiles of the distribution of the 1000 samples.
To illustrate the gain in precision for this data, we esti-

mated the proportions and relative risk in the standard
way, with 95% confidence intervals, denoted the bino-
mial approach. For the proportions, we calculated the
width of the 95% confidence intervals for both ap-
proaches, the lognormal approach and the binomial ap-
proach, and calculated their ratio as a quantification of
the gain in precision. For the relative risk we applied a
similar procedure but on the relative scale.
We also illustrate tests of hypothesis using the two ap-

proaches. For the test of equality of the sPPH propor-
tions between the two treatments, using the binomial
approach, we report the Pearson chi-square statistic and
p-value. To test the equality of the distributions for the
two treatments using the lognormal fits, we proceed se-
quentially: first we test the model with equal scale pa-
rameters versus the full model (both location and scale
parameters possibly different). If the null hypothesis with
equal scale parameters is not rejected, we test the model
with equal location parameters against the model with
possible different location parameters and conclude
about whether the distributions differ at, say, 5% level of
significance.
All the computations for fitting distributions and

obtaining estimates were done with JMP® 13 soft-
ware. [14]
Computations for sample size calculations were

done with SAS® software version 9.4 (PROC POWER
procedure) [15].
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Results
Descriptive histograms of blood loss volume
In Fig. 1 we show histograms of frequency distributions
of blood loss for the Althabe et al. trial (1), by treatment.
The distributions are right-skewed, but from the histo-
grams we cannot specify the statistical distribution ori-
ginating the data.

Fitting a lognormal distribution
A three-parameter lognormal distribution (threshold
lognormal, abbreviated as THLN) was fitted to the data
by maximum likelihood. The third parameter was added
because it improved the fit compared to the two-
parameter lognormal distribution. The estimated param-
eters are shown in Table 1, with their standard errors
and the 95% confidence intervals.
The goodness of fit of the THLN distribution to the

data can be visualized in the lognormal probability plot
of Fig. 2. The probabilities from the fitted lognormal dis-
tribution and the data points are on a straight line for
values above 50 mL, thereby showing that the fit of the
THLN distribution to the data is very good above 50 mL
and providing evidence that the lognormal distribution
is appropriate to the blood loss volume distribution. No
outliers were detected. Only one treatment is shown in
Fig. 2 for illustration purposes, because the two treat-
ments had a very similar behaviour.
In Fig. 3 we show the survival function for the ‘hands-

off ’ treatment (n = 98), where the data points are repre-
sented by black dots and the pointwise 95% confidence
intervals by blue lines. Figure 3 also shows the fit of a

three-parameter lognormal distribution (THLN), in a
superimposed red line, with 95% confidence band (red
area). In Fig. 3 we can see, for example, that the prob-
ability of having 500 mL or more of blood loss is about
0.20. The lognormal distribution fits the data points very
well. The 95% confidence intervals from the lognormal
fit are narrower than the ones for the binomial
estimates.

Estimates of proportions and relative risk
Estimation of proportions using number of events di-
vided by the total number in each treatment will be de-
noted the binomial approach. Estimation of proportions
using the survival function at the relevant cut-off point
will be denoted by the lognormal approach. We can see
in Fig. 3 that the number of black dots above 1000 mL
is 5, resulting in an estimated proportion by the

Fig. 1 Frequency distribution of blood loss volume (mL) by treatment, Althabe et al. trial [1]

Table 1 Estimated parameters for the fitted threshold
lognormal distribution for the Althabe et al. trial [1]
(the three parameters are denoted location, scale and
threshold parameters); treatments are hands-off and
control cord traction (CCT)

Treatment Parameter Estimate Std Error 95% CI

Hands-off location 5.57 0.141 5.30 to 5.85

scale 0.72 0.101 0.52 to 0.92

threshold 55.14 24.474 7.18 to 103.11

CCT location 5.37 0.132 5.11 to 5.63

scale 0.80 0.101 0.60 to 1.00

threshold 62.88 16.414 30.71 to 95.05
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Fig. 2 Probabilistic plot of the THLN fitted curve (red line) with pointwise 95% confidence band (red area), showing the data points (black dots)
with their 95% confidence intervals (blue lines), Althabe et al. trial, hands-off treatment [1]

Fig. 3 THLN fitted curve (red line) with pointwise 95% confidence band (red area), the empirical survival function (black dots) with the pointwise
95% confidence intervals (blue lines), Althabe et al. trial, hands-off treatment [1]
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binomial approach, of 5/98 = 0.051, or 5.1%, for the
hands-off treatment. The estimate of the proportion of
sPPH, based on the fitted survival function, is 0.038 (0.
017 to 0.078). It is interesting to note that, of the five
points in excess of 1000, three are close to the cut-off
point. They could easily have slipped, by chance, to close
values to the left of the cut-off, thereby sharply lowering
the binomial estimate. Such a change would barely affect
the lognormal estimate, since the fitted curve closely fol-
lows the entire cumulative empirical distribution and
takes into account all the data.
Table 2 shows the estimated proportions of sPPH for

the Althabe et al. trial by the binomial approach, as re-
ported in the published trial results [1] and by the log-
normal approach, per treatment group.
As can be appreciated in Fig. 3, Table 2 also shows that

the 95% confidence intervals for the lognormal approach
are narrower than the ones for the binomial approach.
For the hands-off treatment, for example, the width of
the binomial estimate confidence interval is 0.092,
whereas that of the lognormal estimate confidence inter-
val is 0.062, about two thirds of the former. The 95%
confidence intervals width ratio is 67% and 75% respect-
ively for the hands-off treatment and for the controlled
cord traction (CCT) treatment.
For the lognormal distribution, the relative risk, shown

in Table 3, with the 95% confidence intervals, is esti-
mated by the bootstrap technique, using 1000 bootstrap
samples. Note that the confidence intervals for the RR
are wide because this is a small trial that was designed
to compare median blood loss as the main outcome.
From the comparison of the 95% confidence limits for

both approaches, we obtained a log-scale width ratio of
70.4% for the lognormal approach in relation to the bi-
nomial approach, so that the gain in precision when
using the lognormal instead of the binomial approach, is
about 30%.

Tests of hypothesis
The test of equality of sPPH proportions by the binomial
method can be based on a 2 × 2 table, giving the Pearson
chi-square = 0.591 with p-value = 0.4440.

The lognormal tests of hypothesis that the two distri-
butions are the same is shown in Table 4. The compari-
son of the scale parameters shows that they are not
significantly different, as the p-value equals 0.7381;
therefore there is no evidence that the scale parameters
of the two treatments are different. The location param-
eters are not significantly different either, as the p-value
equals 0.1506. Hence we conclude that there is no evi-
dence against the equality of the distributions.
The significance level for the final test, comparing the

location parameters, is about 0.15 for the lognormal ap-
proach. This can be compared to the significance level
of the binomial test, 0.44. The lognormal approach
seems more sensitive.
Figure 4 shows the two distributions side by side on a

lognormal probability plot. The joint confidence inter-
vals overlap entirely, suggesting that the two distribu-
tions are very similar.

Sample size: an example
We present as an example different scenarios of sample
size calculation using the two approaches, the binomial
and the lognormal one.
For the binomial approach, we assume that the pro-

portion of sPPH is 0.015, 0.02 or 0.025 in the current
treatment. We also assume that a new preventive ther-
apy is considered worthwhile if the relative risk of sPPH
of the new therapy with respect to the current one is no
larger than 0.70 or 0.80. We calculated the sample size
for the binomial response based on the likelihood ratio
chi-square one-sided test for the relative risk statistic.
For the lognormal approach, we used the well known re-

sult that if a variable has a lognormal distribution, its loga-
rithm has a normal distribution. Therefore, our sample

Table 2 Estimated proportions of sPPH for the Althabe et al. trial [1] by the binomial and by the lognormal approaches, per
treatment group; treatments are hands-off and control cord traction (CCT)

Trial Treatment n/N Proportion 95% CI Width of the 95% CI Width ratio lognormal vs binomial (%)

Binomial Hands-off 5/98 0.051 (0.022 to 0.114) 0.092 –

CCT 3/101 0.030 (0.010 to 0.084) 0.074 –

Lognormal Hands-off – 0.038 (0.017 to 0.078) 0.062 67

CCT – 0.033 (0.014 to 0.069) 0.055 75

Table 3 Relative risk with 95% confidence intervals for the
binomial and lognormal approaches, and gain in precision,
Althabe et al. trial [1]

Approach RR (95% CI)
CCT vs Hands-off

Ratio upper/lower
limit of the 95% CI

Log scale width
ratio lognormal vs
binomial (%)

Binomial 0.58 (0.14 to 2.37) 16.9 –

Lognormal 0.86 (0.22 to 2.62) 11.9 70.4
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size computations were based on the transformation of
the volumes to their logarithms. For a scenario consisting
of a given proportion of sPPH, say p, and a relative risk
RR = p2/p1, we computed the corresponding risk of the
competing treatment, p2. For the standard deviation on
the log scale, we used the scale parameter obtained from
the analysis of three clinical trials, that was in all cases
close to s = 0.7. [4] The values of the mean m (on the log
scale) can be readily computed for each value of p and for
each scenario, from an equation derived from the propor-
tion p of sPPH:

log 1000ð Þ−m
s

¼ z1−p

where z1-p is the (1-p) quantile (or (1-p)× 100% percent-
ile) of the standard normal distribution, taking values p1
and p2 for a particular scenario. With the two computed
means, derived from p1 and p2 using the equation above,
and the (fixed) standard deviation, together with the
power requirement, the computation of the sample size
is straightforward, done as a comparison of means of the
log-transformed variable blood loss. SAS PROC POWER

with TWOSAMPLEMEANS was used for the
computations.
The total sample sizes for the two approaches, for a

power of 80%, in a one-sided 5% significance test, are
shown in Table 5. The difference in required sample size
is enormous, as expected, because the lognormal ap-
proach is using more of the information in the sample.

Discussion
We have illustrated how to apply an analysis technique
for blood loss volume data based on the lognormal dis-
tribution, without categorizing this response variable, for
a small trial [1], verifying first that the blood loss volume
indeed follows a lognormal distribution. Using data from
two large trials [9, 10], the same pattern was found, that
we reported elsewhere [4]. For these two large trials, the
fit was also very good. We have also fitted a lognormal
distribution to blood loss data using the reported per-
centiles from an observational study [11]. In all cases,
we have found empirical evidence that the blood loss
volume has a lognormal distribution, and can be de-
scribed by a variant of this family of distributions, the
threshold three-parameter lognormal distribution [12].
A lognormal distribution with its specific parameters
characterizes several physical and biological phenomena
[16], and can be described by means of a physical model
as a multiplicative sequence of losses.
Furthermore, the estimated location and scale parame-

ters from all four of the studies analyzed were very

Table 4 Results of lognormal tests of equality of distributions of
the two treatments, Althabe et al. trial [1]

Models compared Likelihood ratio Chi-square DF p-value

No effect vs. location 2.066 1 0.15

Location vs. location and scale 0.112 1 0.74

Fig. 4 Distributions of blood loss for the two treatments, Hands-off (red) and CCT (blue), side by side on a lognormal probability plot, showing
data points (dots), fitted lognormal lines (continued full lines), and 95% confidence bands (shaded areas), Althabe et al. trial [1]
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similar [4]. The studies were conducted in different
places and times, suggesting that the lognormal distribu-
tion fits postpartum blood loss data universally. The sta-
bility of the parameters found in the analysis of blood
loss data across studies may well be a characteristic of
postpartum blood loss that can be further explored.
The available analysis technique to compare proportions

of an event of the type ‘blood loss above a certain cut-off
point’ between treatments or interventions to prevent this
event, has been to estimate the two binomial proportions
of sPPH. The categorization of blood loss volume in two
categories entails loss of information contained in object-
ively measured weight or volume data, with a resulting loss
of power in tests of hypothesis and a decrease in the preci-
sion of the estimates of proportions and relative risks [8].
This fact, together with the low prevalence of rare events
when the cut-off point is a high value of blood loss volume,
for example 1000 mL, results in very large size of trials
needed to compare this event between treatments or
interventions.
We proposed a lognormal approach of analysis of post-

partum haemorrhage trials aiming to compare events of
the type ‘blood loss greater than a certain cutoff point’ be-
tween treatments. [4] We illustrate here this approach, con-
sisting of fitting a lognormal type of distribution to blood
loss data, which involves estimating the parameters that de-
fine the distribution. Once the distribution function of
blood loss volume, or its complement, the survival function,
is defined by its parameters, the proportion of sPPH, for ex-
ample, is just the survival distribution at the point 1000. To
compare treatments using relative risk, we estimated its
confidence interval with bootstrap techniques.
An application of using the lognormal model for the

distribution of the blood loss volume is a substantial re-
duction of sample size of clinical trials, while keeping
the statistical power and precision requirements. Using
the lognormal approach that we propose, based on fit-
ting a lognormal distribution to the postpartum blood
loss data, the objectives of a trial can be attained with
smaller sample sizes and reduced cost, through an im-
provement in the efficiency of the estimation methods.
With the lognormal approach, there is a trade-off

between the simplicity offered by the binomial approach
and the possibility of reducing the size of a trial.
Similar methods described in this paper can be used

with other variables having the lognormal distribution,
like blood pressure [3] and estimation of hypertension.
The reason why this approach has not been used in the
past, is that it is computer intensive. Nowadays, with im-
provement in computer power, this is not a problem, al-
though the complexity of fitting a lognormal distribution
and calculating relative risk’s confidence intervals by
bootstrapping requires statistical expertise.
As an additional bonus to the use of the lognormal ap-

proach based on fitting a lognormal distribution to
blood loss data, it is possible to test other hypotheses of
interest, such as the equality of medians or any other
percentile, or even compare the entire distributions be-
tween two treatments or interventions.

Conclusions
We illustrated how a lognormal approach based on fit-
ting a lognormal distribution to the data can be applied
to measured blood loss volume data of a trial. We found
that the precision of the estimates of proportions of the
event ‘blood loss greater than 1000 mL’ and its compari-
son between treatments improved compared to the
standard methods based on dichotomizing the blood loss
variable. We also illustrate how the lognormal approach
can be used to compare the distribution parameters for
two treatments. When analyzing data using this lognor-
mal approach, sample size of trials can be reduced.
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